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Single-cell and single-nucleus RNA sequencing (scRNA-seq and 
snRNA-seq) have emerged as powerful technologies for inter-
rogating the heterogeneous transcriptional profiles of multicel-

lular systems. Early scRNA-seq workflows were limited to analyzing 
tens to hundreds of single-cell transcriptomes at a time1,2. With the 
advent of single-cell sequencing technologies based on microwells3, 
combinatorial indexing4,5 and droplet-microfluidics6–9, the parallel 
transcriptional analysis of 103–105 cells or nuclei is now routine. 
This increase in cell throughput has catalyzed efforts to characterize 
the composition of whole organs10 and entire organisms4,11.

These technologies will increasingly be used to reveal the mecha-
nisms by which cell populations interact to promote development, 
homeostasis and disease. This shift from descriptive to mechanistic 
analyses requires integrating spatiotemporal information, diverse 
perturbations and experimental replicates to draw strong conclu-
sions12,13. While existing methods can assay many thousands of cells, 
sample-specific barcodes (for example, Illumina library indices) are 
incorporated at the very end of standard library preparation work-
flows. This practice necessitates the parallel processing of individual 
samples, which limits scRNA-seq sample-throughput due to reagent 
costs and the physical constraints of droplet-microfluidics devices. 
Sample multiplexing approaches address this limitation by labeling 
cells with sample-specific barcodes before pooling and single-cell 
isolation. Much as transcripts are linked to cell barcodes during 
reverse transcription, these techniques assign cells into sample 
groups by tracking which cells share sample-specific barcodes. 
Several multiplexing methods have been described that distinguish 
samples using pre-existing genetic diversity14, or introduce sample 
barcodes using either genetic15–20 or non-genetic21–23 mechanisms. 

However, each of these methods has liabilities, including issues with 
scalability, universality and the potential to introduce secondary 
perturbations to experiments.

We identified lipid- and cholesterol-modified oligonucleotides 
(LMOs and CMOs) as reagents that circumvent many of the limi-
tations of other sample multiplexing techniques. We previously 
described LMO and CMO scaffolds that rapidly and stably incorpo-
rate into the plasma membrane of live cells by step-wise assembly24. 
Here, we adapt LMOs and CMOs into MULTI-seq: scRNA-seq 
and snRNA-seq sample multiplexing using lipid-tagged indi-
ces. MULTI-seq localizes sample barcodes to live cells and nuclei 
regardless of species or genetic background while preserving cell 
viability and endogenous gene expression patterns.

Results
MULTI-seq overview. MULTI-seq localizes DNA barcodes to 
plasma membranes by hybridization to an ‘anchor’ LMO. The 
‘anchor’ LMO associates with membranes through a hydrophobic 
5′ lignoceric acid amide. Subsequent hybridization to a ‘co-anchor’ 
LMO incorporating a 3′ palmitic acid amide increases the hydro-
phobicity of the complex and thereby prolongs membrane retention 
(Fig. 1a). MULTI-seq sample barcodes include a 3′ poly-A capture 
sequence, an 8-bp sample barcode and a 5′ PCR handle necessary for 
library preparation and anchor hybridization. Cells or nuclei carry 
membrane-associated MULTI-seq barcodes into emulsion droplets 
where the 3′ poly-A domain mimics endogenous transcripts during 
hybridization to messenger RNA capture beads. Endogenous tran-
scripts and MULTI-seq barcodes are then linked to a common cell- 
or nucleus-specific barcode during reverse transcription, which 
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enables sample demultiplexing. MULTI-seq barcode and endoge-
nous expression libraries are separated by size selection before next-
generation sequencing (NGS) library construction, enabling pooled 
sequencing at user-defined proportions (Methods). The same strat-
egy can be applied to commercially available CMOs.

We used flow cytometry to evaluate whether LMOs and CMOs 
predictably label and minimally exchange between live cells at typical 
sample preparation temperatures of 4 °C (Supplementary Fig. 1a,b).  
Identical experiments were also performed using freshly isolated 

nuclei (Supplementary Fig. 1c,d). These data revealed that LMOs 
exhibit longer membrane residency times than CMOs on live-cell 
membranes at 4 °C, whereas LMOs and CMOs exchange compara-
bly between live cells at room temperature, suggesting cells should 
be maintained on ice to achieve optimal sample multiplexing results 
(Supplementary Fig. 1e). For nuclei, both oligonucleotide con-
jugates showed minimal exchange between nuclear membranes 
(Supplementary Fig. 1d); however, bovine serum albumin (BSA) in 
nuclei isolation buffer specifically quenched LMOs, reducing labeling  
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Fig. 1 | MULTI-seq demultiplexes cell types, culture conditions and time-points for single-cell and single-nucleus RNA sequencing. a, Diagram of 
the anchor/co-anchor LMO and CMO scaffolds (black) with hybridized sample barcode oligonucleotide (red). LMOs and CMOs are distinguished by 
their unique lipophilic moieties (for example, lignoceric acid, palmitic acid or cholesterol). b, Schematic overview of a proof-of-concept single-cell RNA 
sequencing experiment using MULTI-seq. Three samples (HEKs and HMECs with and without TGF-β stimulation) were barcoded with either LMOs or 
CMOs and sequenced alongside unlabeled controls. Cells were pooled together before scRNA-seq. NGS produces two UMI count matrices corresponding 
to gene expression and barcode abundances. GEM, gel bead-in-emulsion; RT, reverse transcription. c, Cell-type annotations for LMO-labeled cells: HEKs 
(pink), MEPs (cyan) and LEPs (dark teal) in gene expression space (see Supplementary Fig. 2a). Ambiguous cells positive for multiple marker genes are 
displayed in gray. n = 6,186 MULTI-seq barcoded cells. d, MULTI-seq sample classifications for LMO-labeled cells: HEKs (dark red), unstimulated HMECs 
(green) and TGF-β-stimulated HMECs (blue). Classified doublets (black) predominantly overlap with ambiguously annotated cells. n = 6,186 MULTI-seq 
barcoded cells. nUMI, number of unique molecular identifiers. e, TGFBI expression in TGF-β-stimulated HMECs (blue) and unstimulated HMECs (green). 
***Wilcoxon rank-sum test (two-sided), P < = 10−16. n = 1,950 MULTI-seq barcoded HMECs. Data are represented as mean ± s.e.m. f, Single-nucleus 
MULTI-seq sample classification proportions for each cell type identified by clustering in gene expression space (see Supplementary Fig. 2e–g). n = 5,894 
MULTI-seq barcoded nuclei. g, MULTI-seq sample classifications in Jurkat cells following activation with ionomycin and PMA for varying amounts of time. 
Time-point centroids in gene expression space are denoted with larger circles. n = 3,709 Jurkat nuclei. h, Violin plots of gene expression marking different 
stages of Jurkat cell activation. n = 3,709 Jurkat nuclei.
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efficiency (Supplementary Fig. 1b). While problematic during 
nuclei labeling, we reasoned that LMO quenching could be strate-
gically employed during live-cell labeling to reduce off-target bar-
coding and potentially minimize washes before sample pooling. We 
found that diluting LMO-labeling reactions with 1% BSA in PBS 
resulted in minimal off-target labeling following pooling (<1% of 
primary labeling signal), which was 18-fold lower than dilution 
with PBS (Supplementary Fig. 1f).

MULTI-seq enables scRNA-seq sample demultiplexing. We tested 
the capacity of MULTI-seq to demultiplex scRNA-seq samples by 
performing a proof-of-concept experiment using human embry-
onic kidney (HEK) 293 cells (HEK293) and primary human mam-
mary epithelial cells (HMECs) cultured in the presence or absence 
of transforming growth factor (TGF)-β (Fig. 1b). Cells were tryp-
sinized, barcoded with LMOs or CMOs and pooled before droplet 
microfluidic-emulsion with the 10x Genomics Chromium system. In 
parallel, we prepared unbarcoded replicates to test whether MULTI-
seq influenced gene expression or mRNA capture efficiency.

Following data pre-processing (Methods), we analyzed a 
final scRNA-seq dataset containing 14,377 total cells. We identi-
fied clusters in gene expression space according to known mark-
ers for HEKs as well as the two cellular components of HMECs, 
myoepithelial (MEPs) and luminal epithelial cells (LEPs; Fig. 1c 
and Supplementary Fig. 2a). Projecting MULTI-seq barcode clas-
sifications onto gene expression space for LMO-labeled (Fig. 1d) 
and CMO-labeled cells (Supplementary Fig. 2b) illustrates that 
both membrane scaffolds successfully demultiplexed each sam-
ple. HMECs predicted to have been cultured with TGF-β exhib-
ited enriched TGF-β induced (TGFBI) gene expression (Fig. 1e). 
Moreover, RNA and MULTI-seq barcode unique molecular iden-
tifier (UMI) counts were not negatively correlated, demonstrating 
that MULTI-seq does not impair mRNA capture (Supplementary 
Fig. 2c). However, we observed transcriptional changes in CMO-
labeled HEKs (Supplementary Fig. 2d and Supplementary Table 1) 
that were absent in LMO-labeled HEKs.

Demultiplexing snRNA-seq and time-course experiments. 
snRNA-seq is widely used for analyses of solid tissues that are 
difficult to dissociate25. We explored whether MULTI-seq could 
demultiplex snRNA-seq samples by purifying nuclei from HEKs 
and mouse embryonic fibroblasts (MEFs) and labeling each pool of 
nuclei with LMOs or CMOs before snRNA-seq. In parallel, we multi-
plexed Jurkat cells treated with ionomycin and phorbol 12-myristate 
13-acetate (PMA) at eight time-points (0–24 h) to track T-cell activa-
tion dynamics (Supplementary Fig. 2e). MULTI-seq sample classifi-
cations matched their intended cell-type clusters in gene expression 
space (Supplementary Fig. 2f,g) with an ~0.5% misclassification 
rate (Fig. 1f). MULTI-seq classifications were species-specific and 
predicted ~85% of mouse-human doublets, which approximates 
the theoretical doublet detection limit for MULTI-seq experiments 
with 12 samples of 91.7%. Matching live-cell results, MULTI-seq 
barcoding did not impair mRNA capture (Supplementary Fig. 2h). 
In contrast to live-cell results, both CMO- and LMO-labeled nuclei 
were transcriptionally indistinguishable from unbarcoded controls 
(Supplementary Fig. 2i). Moreover, CMO-labeled nuclei had higher 
average signal-to-noise ratio (SNR) and total number of barcode 
UMIs relative to LMO-labeled nuclei (Supplementary Table 2), con-
sistent with previous flow cytometry results.

On demultiplexing individual time-points along the trajec-
tory of T-cell activation (Fig. 1g), we observed multiple literature-
supported transcriptional dynamics (Fig. 1h). For example, genes 
undergoing early down-regulation (for example, TSHR26) and tran-
sient (for example, DUSP2, ref. 27), sustained (for example, CD69, 
ref. 28) and late (for example, GRZA29) up-regulation were readily 
identified in the data.

MULTI-seq identifies doublets in scRNA-seq data. We next 
sought to demonstrate MULTI-seq scalability by multiplexing 96 
unique HMEC samples spanning a range of microenvironmen-
tal conditions. We exposed duplicate cultures consisting of MEPs, 
LEPs and both cell types grown in M87A media30 without EGF to 
15 physiologically relevant signaling molecules31 or signaling mol-
ecule combinations (Supplementary Fig. 3a). We barcoded each 
sample before pooling and loaded cells across three 10× microfluid-
ics lanes, resulting in a 32-fold reduction in reagent use relative to 
standard practices.

To classify HMECs into sample groups, we implemented a 
sample classification workflow inspired by previous strategies15,16,21 
(Methods, Supplementary Materials and Supplementary Fig. 4) 
that identified 76 sample groups consisting of 26,439 total cells 
(Supplementary Fig. 3b). Each group was exclusively enriched 
for a single barcode (Fig. 2a, left, and Supplementary Fig. 3c) an 
average of ~199-fold above the most abundant off-target barcode 
(Supplementary Fig. 3d). Unlike sample multiplexing data with rel-
atively few samples, MULTI-seq-defined doublets localized to the 
peripheries of singlet clusters in barcode space for this experiment 
(Fig. 2a, right). We suspected that missing barcodes resulted from 
handling errors during sample preparation (Supplementary Fig. 3b 
and Supplementary Materials), as a technical replicate yielded all 96 
sample groups (Supplementary Fig. 3e–g).

To assess demultiplexing accuracy, we grouped MULTI-seq 
classifications according to cell-type composition (for example, 
MEPs alone, LEPs alone or both) and visualized these groups in 
gene expression space. Unsupervised clustering and marker analy-
sis of the resulting transcriptome data distinguished LEPs from 
MEPs along with a subset of ambiguous cells expressing mark-
ers for both cell types (Fig. 2b, left, and Supplementary Fig. 5a). 
MULTI-seq classifications matched their expected cell-type clus-
ters (Fig. 2b, right), while cells co-expressing MEP and LEP mark-
ers were predominantly defined as doublets. MULTI-seq identified 
doublets that were overlooked when predicting doublets using 
marker genes (Fig. 2b, arrow). Additionally, MULTI-seq doublet 
classifications generally agreed with computational predictions 
generated using DoubletFinder32 (Fig. 2c, sensitivity, 0.283 and 
specificity, 0.965), with the exception of ‘homotypic’ doublets—that 
is, doublets formed from transcriptionally similar cells—to which 
computational doublet detection techniques are insensitive32,33 
(Supplementary Materials). Moreover, DoubletFinder erroneously 
classified proliferative LEPs as doublets (Fig. 2c, arrow), illustrat-
ing how computational doublet inference performance suffers when 
applied to datasets with low cell-type numbers32,33.

MULTI-seq identifies transcriptional responses to co-culture 
conditions and signaling molecules. Sample demultiplexing, dou-
blet removal and quality-control filtering resulted in a final scRNA-
seq dataset including 21,753 total cells, revealing two transcriptional 
responses linked to culture composition. First, we observed that 
LEPs co-cultured with MEPs exhibited enriched proliferation rela-
tive to LEPs cultured alone (Fig. 2d and Supplementary Fig. 5b). In 
contrast, MEPs were equally proliferative when cultured alone or 
with LEPs (Supplementary Fig. 5c). Second, we observed that non-
proliferative co-cultured MEPs and LEPs were enriched for TGFBI 
expression relative to MEPs and LEPs cultured alone (Fig. 2d, bot-
tom right, and Supplementary Fig. 5d).

We next used hierarchical clustering to assess how LEPs or MEPs 
responded to signaling molecule exposure. HMECs exposed to the 
EGFR ligands AREG and EGF exhibited gene expression profiles 
that were notably different from control cells. AREG- and EGF-
stimulated LEPs expressed increased levels of EGFR signaling genes 
(for example, DUSP4, ref. 34) and genes up-regulated in HER2+ 
breast cancers (for example, PHLDA1 (ref. 35) and Fig. 2e) relative to 
control LEPs. AREG- and EGF-stimulated MEPs also express high 
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levels of known EGFR-regulated genes (for example, ANGPTL4 
(ref. 36) and Supplementary Fig. 5e).

MULTI-seq identifies low-RNA cells in cryopreserved, primary 
patient-derived xenograft (PDX) samples. Using scRNA-seq to 
analyze archival primary tissue samples is often difficult because 
these samples can have low cell viability that is compounded during  

cryopreservation, thawing, enzymatic digestion and scRNA-seq 
sample preparation. We investigated whether the rapid and non-
perturbative nature of MULTI-seq barcoding would enable cryo-
preserved tissue multiplexing using samples dissected from a PDX 
mouse model of metastatic triple-negative breast cancer37. In this 
model system, the diameter of primary tumors was used as a proxy 
for metastatic progression in the lung (Supplementary Fig. 6a). 
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We barcoded nine distinct samples representing primary tumors 
and lungs from early- and mid-stage PDX mice (in duplicate), one 
late-stage PDX mouse and a single lung from an immunodeficient 
mouse without tumors (Fig. 3a). We then pooled fluorescence-
activated cell sorting (FACS)-enriched populations of barcoded 
hCD298+ human metastases with mCD45+ mouse immune cells 
before ‘super-loading’ a single 10x Genomics microfluidics lane.

Quality-control filtering, sample classification and doublet 
removal resulted in a final scRNA-seq dataset of 9,110 mouse 
and human singlets spanning all nine samples (Fig. 3b and 
Supplementary Fig. 6b). Under the conditions tested, barcode 
SNR was largely invariant to inter-sample differences in total cell 
number and viability (Supplementary Fig. 6c and Supplementary 
Table 3). Classification accuracy was supported by tissue-specific 
gene expression patterns (Supplementary Fig. 6d) and comparisons 
to FACS enrichment results (Supplementary Fig. 6e). Additionally, 
MULTI-seq classifications identified high-quality single-cell tran-
scriptomes that would have been discarded using standard quality-
control workflows (for example, Cell Ranger RNA UMI inflection 
point threshold equal to 1,350, Fig. 3c). When comparing cells with 
100–1,350 RNA UMIs, classified cells included immune cell types 
that are difficult to detect using single-cell and bulk transcriptomics 
(for example, neutrophils38). Strikingly, 90.8% of sequenced neutro-
phils would have been discarded by Cell Ranger. In contrast, unclas-
sified low-RNA cells had poor-quality gene expression profiles39 
(Supplementary Table 4).

Characterizing the lung immune response to metastatic progres-
sion. We next sought to describe how lung immune cells respond to 
metastatic progression. Beginning with a dataset comprising 5,690 
mCD45+ cells, we identified gene expression profiles associated 
with neutrophils, monocytes and macrophages (alveolar, interstitial 
and (non)-classical monocytes), dendritic cells (mature, immature, 
Ccr7+ and plasmocytoid DCs) and endothelial cells10,40 (Fig. 3d, top, 
and Supplementary Fig. 6f). The use of immunodeficient PDX mice 
resulted in a lack of lymphocytes (for example, T, B and NK cells).

We observed literature-supported changes in immune cell pro-
portions (Fig. 3d) and transcriptional state (Fig. 3e) at each tumor 
stage. For instance, neutrophils were enriched in early-stage PDX 
mice while alveolar macrophages were depleted over the course of 
metastasis41,42. Moreover, stage-specific transcriptional heterogene-
ity among classical monocytes (Fig. 3f) reflects previous descrip-
tions of lung classical monocyte state transitions in PDX breast 
cancer models43.

Unsupervised clustering of classical monocytes cleanly resolved 
cells from each tumor stage (Supplementary Fig. 6g), enabling the 
identification of genes up-regulated in classical monocytes during 
metastatic progression (Supplementary Table 5). Clustering also 
revealed that classical monocytes from late-stage PDX mice fell 
into two distinct transcriptional states discernible by Cd14 expres-
sion (Fig. 3f, inset, and Supplementary Table 6) matching previ-
ous observations44. Genes that are differentially expressed between 
classical monocyte subsets include genes known to influence meta-
static progression43,45,46 (for example, Thbs1, S100a8, S100a9 and 
Wfdc21). To rule out the possibility that these results were primar-
ily due to inter-mouse variability, we used Earth Mover’s Distance 
(EMD)47 to quantify the magnitude of transcriptional dissimilar-
ity between lung classical monocytes from each mouse and tumor 
stage. These results illustrate that classical monocytes from early- 
and mid-stage mouse replicates (scaled EMD = 0.16) were more 
similar than classical monocytes from distinct tumor stages (scaled 
EMD = 0.69).

Discussion
MULTI-seq is a scalable multiplexing approach because it uses 
inexpensive reagents, involves minimal sample handling and is 

rapid and modular in design. MULTI-seq modularity enables any 
number of samples to be multiplexed with a single pair of ‘anchor’ 
and ‘co-anchor’ LMOs. Moreover, since LMOs are quenchable with 
BSA and can be incorporated during proteolytic dissociation, we 
anticipate that further method optimization will facilitate wash-free 
sample preparation workflows. When integrated with automated 
liquid handling, these features position MULTI-seq as a powerful 
technology enabling ‘screen-by-sequencing’ applications (for exam-
ple, L1000 (ref. 48) and DRUG-seq49) in multicellular systems (for 
example, organoids, PBMCs and so on).

In this study, we leveraged MULTI-seq scalability to perform 
a 96-plex HMEC perturbation assay, revealing noteworthy prin-
ciples for future scRNA-seq sample multiplexing experiments. 
Specifically, we observed that responses to signaling molecules were 
less pronounced than responses linked to cellular composition. For 
instance, co-cultured MEPs and LEPs engage in TGF-β signaling 
that is absent in the associated monocultures. In contrast, MEPs and 
LEPs only exhibited pronounced transcriptional responses to the 
EGFR ligands AREG and EGF in these data, despite the established 
roles of all tested signaling molecules in mammary morphogenesis. 
We speculate that rich media formulations used to expand cells, 
such as the M87A media (-EGF) used here, likely buffer cells against 
microenvironmental perturbations. Thus, careful consideration of 
cell-type composition and media formulation will be essential to 
accurately interpret future scRNA-seq experiments.

Beyond its scalability, MULTI-seq improves scRNA-seq data 
quality in two distinct ways. First, MULTI-seq identifies dou-
blets as cells associated with multiple sample indices. The ability 
to detect doublets allows for droplet-microfluidics devices to be 
‘super-loaded’, resulting in roughly five-fold improvement in cel-
lular throughput14,21. Moreover, unlike computational doublet pre-
diction methods32,33, MULTI-seq detects homotypic doublets and 
performs well on scRNA-seq data with minimal cell-type complex-
ity. However, since computational doublet detection methods detect 
doublets formed from cells with shared sample barcodes32, doublet 
detection should ideally involve a synergy of computational and 
molecular approaches.

Second, MULTI-seq improves scRNA-seq data quality by ‘res-
cuing’ cells that would otherwise be discarded by quality-control 
workflows using RNA UMI thresholds. Such workflows are system-
atically biased against cell types with low RNA content39. MULTI-
seq classifications provide an orthogonal metric to RNA UMIs for 
distinguishing low-RNA from low-quality cells. We leveraged this 
feature (described initially by Stoeckius et al.21) to improve the qual-
ity of the PDX dataset, where MULTI-seq classifications ‘rescued’ 
>90% of the sequenced neutrophils while avoiding misclassification 
of broken cells.

Finally, MULTI-seq is universally applicable to any sample 
including cells or nuclei with an accessible plasma membrane. As 
a result, we used the same set of MULTI-seq reagents to multiplex 
15 distinct cell types or nuclei from both mice and humans. CMOs 
outperformed LMOs in nuclei isolation buffers containing BSA 
because BSA sequesters LMOs. Further, we anticipate that MULTI-
seq is compatible with sample preservation strategies such as flash-
freezing and fixation.

We leveraged all three of these features—scalability, universal-
ity and data quality improvement—to multiplex cryopreserved 
primary tumors and lungs dissected from PDX mouse models at 
varying stages of metastatic progression. PDX sample multiplex-
ing requires barcoding cells from (1) multiple species that may (2) 
down-regulate surface epitopes commonly targeted by antibody-
based multiplexing techniques (for example, MHC-1, ref. 50) and (3) 
have intrinsically low viability requiring minimal sample handling. 
MULTI-seq successfully demultiplexed every sample, revealing sev-
eral immune cell responses to metastatic progression in the lung. For 
example, we confirmed previous reports of metastasis-associated  
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shifts in neutrophil, alveolar macrophage and classical monocyte 
proportions. These findings indicate that MULTI-seq can identify 
known aspects of disease progression. However, we also observed 
several changes in the immune microenvironment that to our 

knowledge have not been previously reported, including significant 
shifts in interstitial macrophages, dendritic cells and non-classical 
monocytes. Although these findings will require further experimen-
tation for validation, they indicate that MULTI-seq may provide 
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new insights into disease progression that would be less accessible 
without sample multiplexing.

Moreover, we identified classical monocyte subsets that were 
discernible by Cd14 expression and genes with diverse effects on 
metastatic progression. Cd14-high classical monocytes express-
ing the pro-metastatic gene Thbs1 (ref. 45) and Cd14-low classical 
monocytes expressing the anti-metastatic genes S100a8, S100a9 
and Wfdc21 (ref. 46) coexisted in metastasized lungs. Since we iso-
lated immune cells from the whole lung in this study, we could not  
discern whether Cd14-high and Cd14-low states were spatially 
correlated with metastatic sites. However, MULTI-seq could be 
employed to spatially barcode distinct regions of a single meta-
static lung, enabling direct interrogation of classical monocyte  
spatial heterogeneity.

In summary, MULTI-seq broadly enables users to incorporate 
additional layers of information into scRNA-seq experiments. We 
anticipate that in the future, more diverse types of information will 
be targeted, including spatial coordinates, time-points, species-of-
origin and sub-cellular structures (for example, nuclei from multi-
nucleated cells). We also anticipate that increasing LMO membrane 
residency time using alternative oligonucleotide conjugate designs 
may enable MULTI-seq applications for non-genetic lineage tracing 
and/or cellular competition assays.

online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41592-019-0433-8.
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Methods
Experimental methods. Anchor LMO and co-anchor LMO synthesis. 
Oligonucleotides were synthesized on an Applied Biosystems Expedite 8909 DNA 
synthesizer, as previously described (Weber et al.24, Supplementary Materials).

Cell culture. For the proof-of-concept scRNA-seq and snRNA-seq experiments, 
HEK293 cells, HMECs, Jurkat cells and MEF cells were maintained at 37 °C with 
5% CO2. HEK293 and MEF cells were cultured in Dulbecco’s modified Eagle’s 
medium, high glucose (DMEM H-21) containing 4.5 g l−1 glucose, 0.584 g l−1  
l-glutamine, 3.7 g l−1 NaHCO3, supplemented with 10% fetal bovine serum (FBS) 
and penicillin/streptomycin (100 U ml–1 and 100 μg ml−1, respectively). HMECs 
were cultured in M87A media30 with or without 24 h of stimulation with 5 ng ml−1 
human recombinant TGF-β (Peprotech). Jurkat cells were cultured in RPMI-
1640 with 25 mM HEPES and 2.0 g l−1 NaHCO3 supplemented with 10% FBS and 
penicillin/streptomycin (100 U ml−1 and 100 μg ml−1, respectively).

For the 96-sample HMEC experiments, fourth passage HMECs were lifted 
using 0.05% trypsin-EDTA for 5 min. The cell suspension was passed through 
a 45-μm cell strainer to remove any clumps. The cells were washed with M87A 
media once and resuspended at 107 cells ml−1. The cells were incubated with 1:50 
APC/Cy-7 anti-human/mouse CD49f (Biolegend, no. 313628) and 1:200 FITC 
anti-human CD326 (EpCAM) (Biolegend, no. 324204) antibodies for 30 min 
on ice. The cells were washed once with PBS and resuspended in PBS with 2% 
BSA with DAPI at 2–4 million cells ml−1. Cells were sorted on BD FACSAria III. 
DAPI+ cells were discarded. LEPs were gated as EpCAMhi/CD49flo and MEPs were 
gated as EpCAMlo/CD49fhi (Supplementary Fig. 7)51. This gating strategy results 
in trace numbers of MEPs and LEPs sorted incorrectly. HMEC sub-populations 
were sorted into 24-well plates such that wells contained LEPs only, MEPs only 
or a 2:1 ratio of LEPs to MEPs. Sorted cell populations were cultured for 48 h in 
M87A media before culturing for 72 h in M87A media (-EGF) supplemented with 
different signaling molecules or signaling molecule combinations. Specifically, 
M87A media (-EGF) was supplemented with 100 ng ml−1 RANKL, 100 ng ml−1 
WNT4, 100 ng ml−1 IGF-1, 113 ng ml−1 AREG and/or 5 ng ml−1 EGF (all from 
Peprotech) alone or in all possible pairwise combinations. For the 96-sample 
HMEC technical replicate experiment, in vitro cultures were prepared as described 
above, except all sorted wells contained both LEPs and MEPs. Cultures were then 
grown in complete M87A media for 72 h before isolation.

scRNA-seq sample preparation. For the proof-of-concept experiment, cells were first 
treated with trypsin for 5 min at 37 °C in 0.05% trypsin-EDTA before quenching 
with appropriate cell culture media. Single-cell suspensions were then pelleted 
for 4 min at 160 relative centrifugal force (rcf) and washed once with PBS before 
suspension in 90 μl of a 200 nM solution containing equimolar amounts of anchor 
LMO and sample barcode oligonucleotides in PBS. Anchor LMO-barcode labeling 
was performed for 5 min on ice before 10 μl of 2 μM co-anchor LMO in PBS (for 
a final concentration of 200 nM) was added to each cell pool. Following gentle 
mixing, the labeling reaction was continued on ice for another 5 min before cells 
were washed twice with PBS, resuspended in PBS with 0.04% BSA, filtered and 
pooled. The same workflow was also performed with CMOs. LMO-, CMO- and 
unlabeled control cells were then loaded into three distinct 10x microfluidics lanes.

For the original 96-plex HMEC experiment, LMO labeling was performed 
during trypsinization to minimize wash steps and thereby limit cell loss and 
preserve cell viability. HMECs cultured in 24-well plates were labeled for 5 min at 
37 °C and 5% CO2 in 190 μl of a 200 nM solution containing equimolar amounts of 
anchor LMO and sample barcode oligonucleotides in 0.05% trypsin-EDTA. Then, 
10 μl of 4 μM co-anchor LMO in 0.05% trypsin-EDTA was then added to each well 
(for a final concentration of 200 nM) and labeling/trypsinization was continued for 
another 5 min at 37 °C and 5% CO2 before quenching with appropriate cell culture 
media. A similar labeling protocol was used for the technical replicate experiment, 
except LMOs were incorporated once the cells were in single-cell suspension. 
Cells were then transferred to a 96-well plate for washing with 0.04% BSA in PBS. 
Finally, cells were pooled into a single aliquot, filtered through a 0.45-μm cell 
strainer and counted before loading 10x microfluidics lanes.

For the PDX experiment, primary tumors and lungs were cryopreserved after 
dissection from triple-negative breast cancer PDX models generated in NOD-
SCID gamma mice as described previously53. The UCSF Institutional Animal Care 
and Use Committee (IACUC) reviewed and approved all animal experiments. 
On the day of the experiment, cryopreserved tissues were thawed and dissociated 
in digestion media containing 50 μg ml−1 Liberase TL (Sigma-Aldrich) and 
2 × 104 U ml−1 DNase I (Sigma-Aldrich) in DMEM/F12 (Gibco) using standard 
GentleMacs protocols. Dissociated cells were then filtered through a 70-μm cell 
strainer to obtain a single-cell suspension before washing with PBS. Cells were then 
stained for 15 min on ice with 1:500 Zombie NIR (BioLegend, no. 423105) viability 
dye in PBS. Cells were then washed with 2% FBS in PBS before blocking for 5 min 
on ice with 100 μl 1:200 Fc-block (Tonbo, no. 70-0161-U500) in 2% FBS in PBS. 
After blocking, cells were stained for 45 min on ice with 100 μl of an antibody 
cocktail containing anti-mouse TER119 (FITC, Thermo Fisher, no. 11-5921-82), 
anti-mouse CD31 (FITC, Thermo Fisher, no. 11-0311-85), anti-mouse CD45 
(BV450, Tonbo, no. 75-0451-U100), anti-mouse MHC-I (APC, eBioscience, no. 
17-5999-82) and anti-human CD298 (PE, BioLegend, no. 341704). Cells were 

then washed with PBS before MULTI-seq labeling for 5 min on ice with 100 μl of 
2.5 μM anchor LMO-barcode in PBS. Then, 20 μl of 15 μM co-anchor LMO in PBS 
was added to each cell pool (for a final concentration of 2.5 μM) and labeling was 
continued for another 5 min.

We used a ten fold greater LMO concentration for this experiment to account 
for increases in the total number of cells and lipophilic molecules remaining after 
dissociation. Following LMO labeling, cells were diluted with 100 μl of 2% FBS in 
PBS to ‘quench’ LMOs and washed once in 2% FBS in PBS. Finally, mCD45+ mouse 
immune cells and hCD298+ human metastases from dissociated primary tumors 
and lungs were pooled after FACS enrichment, as described previously  
(Lawson et al.53, see Supplementary Fig. 8). Cell pools were then processed on a 
single 10x microfluidics lane.

snRNA-seq sample preparation. For the Jurkat cell activation time-course, 2 × 105 
Jurkat cells were added to eight wells of a 12-well plate and treated with 10 ng μl−1 
phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich no. P8139) and 1.3 μM 
ionomycin (Sigma-Aldrich no. I0634) at 15 min, 30 min, 1 h, 2 h, 4 h, 6 h or 24 h 
before barcoding with LMOs. A single well of Jurkat cells were left untreated. 
HEK293 and MEF cells were cultured as described above. Nuclei were isolated 
from cells using a protocol adapted from 10x Genomics. Briefly, suspensions 
of HEK293, MEF or treated Jurkat cells were washed once with PBS, pelleted 
at 160 rcf (HEK293, MEF) or 300 rcf (Jurkat) for 4 min at 4 °C and suspended 
in chilled lysis buffer (0.5% Nonidet P40 Substitute, 10 mM Tris-HCl, 10 mM 
NaCl and 3 mM MgCl2 in milliQ water) to a density of 2.5 × 106 cells ml−1. Lysis 
proceeded for 5 min on ice, after which the lysate was pelleted (500 rcf, 4 °C, 4 min) 
and washed three times in chilled resuspension buffer (2% BSA in PBS). Nuclei 
were then diluted to a concentration of ~106 nuclei ml−1 before LMO or CMO 
labeling. HEK293 and MEF cells were each divided into two samples and labeled 
with LMOs or CMOs (500 nM in resuspension buffer) using the same procedure as 
described for live cells (presence of BSA during labeling is the lone alteration as it is 
required to prevent nuclei clumping). Each Jurkat sample was labeled with LMOs, 
alone. Each sample was washed three times in 1 ml resuspension buffer (500 rcf, 
4 °C, 4 min). The four LMO- and CMO-labeled HEK293 and MEF samples were 
pooled in equal portions and, separately, Jurkat samples were pooled in equal 
proportions. These final two samples were combined in a 1:1 ratio and processed 
on a single 10x microfluidics lane.

scRNA-seq and snRNA-seq library preparation. Sequencing libraries were prepared 
using a custom protocol based on the 10x Genomics Single Cell V2 and CITE-seq52 
workflows. Briefly, the 10x workflow was followed up until complementary DNA 
amplification, where 1 μl of 2.5 μM MULTI-seq additive primer was added to the 
cDNA amplification master mix:

MULTI-seq additive primer: 5′-CCTTGGCACCCGAGAATTCC-3′
This primer increases barcode sequencing yield by enabling the amplification 

of barcodes that successfully primed reverse transcription on mRNA capture 
beads but were not extended via template switching (Supplementary Fig. 9c). The 
MULTI-seq additive primer was erroneously excluded during the proof-of-concept 
snRNA-seq library preparation and nuclei were still able to be robustly classified. 
Following amplification, barcode and endogenous cDNA fractions were separated 
using a 0.6× solid phase reversible immobilization (SPRI) size selection. The 
endogenous cDNA fraction was then processed according to the 10x workflow 
until NGS with the formats shown in Supplementary Table 7.

To prepare the barcode fraction for NGS, contaminating oligonucleotides 
remaining from cDNA amplification were first removed using an established 
small RNA enrichment protocol (Beckman Coulter). Specifically, we increased 
the final SPRI ratio in the barcode fraction to 3.2× reaction volumes and added 
1.8× reaction volumes of 100% isopropanol (Sigma-Aldrich). Beads were then 
washed twice with 400 μl of 80% ethanol and allowed to air dry for 2–3 min before 
elution with 50 μl of Buffer EB (Qiagen). Eluted barcode cDNA was then quantified 
using QuBit before library preparation PCR (95 °C, 5′; 98 °C, 15′; 60 °C, 30′; 72 °C, 
30′; eight cycles; 72 °C, 1′; 4 °C hold). Each reaction volume was a total of 50 μl 
containing 26.25 μl 2× KAPA HiFi HotStart master mix (Roche), 2.5 μl of 10 μM 
TruSeq RPIX primer (Illumina), 2.5 μl of 10 μM TruSeq Universal Adapter primer 
(Illumina), 3.5 ng barcode cDNA and nuclease-free water.

TruSeq RPIX:
5 ′- CA AG CA GA AG AC GG CA TA CG AG AT N NN NN N GT GA CT GG AG TT-

CCTTGGCACCCGAGAATTCCA-3′
TruSeq P5 adaptor:
5′- AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG

CTCTTCCGATCT-3′
Following library preparation PCR, remaining sequencing primers and 

contaminating oligonucleotides were removed via a 1.6× SPRI clean-up. 
Representative Bioanalyzer traces at different stages of the MULTI-seq library 
preparation workflow are documented in Supplementary Fig. 9. Barcode libraries 
were sequenced using the NGS formats documented in Supplementary Table 2. 
Sequencing reads predominantly aligned to the barcode reference sequences  
and resulted in high SNRs with low rates of duplicated UMIs, suggesting  
that barcode libraries were not sequenced to saturation for any of the  
presented experiments.
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Design and synthesis of LMOs, CMOs and sample barcode oligonucleotides. Anchor 
and co-anchor LMO and CMO designs were adapted from Weber et al.24. Briefly, 
the anchor LMO has a 5′ lignoceric acid modification with two oligonucleotide 
domains. The 5′ end is complementary to the co-anchor LMO, which bears 
a 3′ palmitic acid, and the 3′ end is complementary to the PCR handle of the 
sample barcode oligonucleotide. The sample barcode was designed to have three 
components (as in Stoeckius et al.52): (1) a 5′ PCR handle for barcode amplification 
and library preparation, (2) an 8-bp barcode with Hamming distance greater than 
three relative to all other utilized barcodes and (3) a 30-bp poly-A tail necessary 
for hybridization to the oligo-dT region of mRNA capture bead oligonucleotides. 
Identically designed anchor and co-anchor CMOs are conjugated to cholesterol 
at the 3′ or 5′ ends via a triethylene glycol (TEG) linker and are commercially 
available from Integrated DNA Technologies.

Anchor: {LA/Chol-TEG}-5′-GTAACGATCCAGCTGTCACTTGGAATTCTC
GGGTGCCAAGG-3′

Co-anchor: 5′-AGTGACAGCTGGATCGTTAC-3′-{PA/TEG-Chol}
Sample barcode: 5′-CCTTGGCACCCGAGAATTCCANNNNNNNNA30-3′

Computational methods. Expression library pre-processing. Expression library 
FASTQs were pre-processed using Cell Ranger (10x Genomics) and aligned to the 
hg19 (proof-of-concept scRNA-seq, HMEC), concatenated mm10-hg19 (PDX) or 
concatenated mm10-hg19 pre-mRNA (proof-of-concept snRNA-seq) reference 
transcriptomes. When multiple 10x lanes were sequenced in an experiment, Cell 
Ranger aggregate was used to perform read-depth normalization.

Cell/nuclei calling. For the proof-of-concept scRNA-seq, snRNA-seq and HMEC 
technical replicate experiments, cell-associated barcodes were defined using Cell 
Ranger. For the original 96-plex HMEC experiment, cells were defined as cell 
barcodes (1) associated with ≥600 total RNA UMIs that (2) were successfully 
classified during MULTI-seq sample classification workflow. We manually selected 
600 RNA UMIs as a threshold to exclude low-quality cell barcodes. For the PDX 
experiment, we defined cells as barcodes (1) associated with ≥100 total RNA UMIs 
that (2) were successfully classified during the MULTI-seq sample classification 
workflow (Supplementary Materials).

Expression library analysis. Following pre-processing and cell/nuclei calling, RNA 
UMI count matrices were prepared for analysis using the ‘Seurat’ R package, 
as described previously54,55. Briefly, genes expressed in fewer than three cells 
were discarded before the percentage of reads mapping to mitochondrial genes 
(%Mito) was computed for each cell. Outlier cells with elevated %Mito were 
visually defined and discarded. Data were then log2 transformed, centered and 
scaled before variance due to %Mito and the total number of RNA UMIs were 
regressed out. Highly variable genes were then defined for each dataset by selecting 
mean expression and dispersion thresholds resulting in ~2,000 total genes. These 
variable genes were then used during principal component analysis and statistically 
significant principal components were defined by principal component elbow plot 
inflection point estimation. Significant principal components were then used for 
unsupervised Louvian clustering and dimensionality reduction with t-SNE56.

Following pre-processing, differential gene expression analysis was conducted 
using the ‘FindMarkers’ command in ‘Seurat’, with ‘test.use’ set to ‘bimod’57 and 
log fold-change thresholds set in a context-dependent fashion (Supplementary 
Materials). Other dataset-specific analyses are discussed in the Supplementary 
Materials. Dataset-specific ‘Seurat’ pre-processing parameters are given in 
Supplementary Table 8.

Barcode library pre-processing. Raw barcode library FASTQs were converted to 
barcode UMI count matrices using custom scripts leveraging the ‘ShortRead’58 and 
‘stringdist’59 R packages (Supplementary Fig. 3). Briefly, raw FASTQs were first 
parsed to discard reads where the first 16 bases of R1 did not perfectly match any 
of the cell barcodes associated a pre-defined list of cell barcodes. Second, reads 
where the first eight bases of R2 did not align with <1 mismatch to any reference 
barcode were discarded. Third, reads were binned by cell barcodes and duplicated 
UMIs were identified as reads where bases 17–26 of R2 exactly matched. Finally, 
reference barcode alignment results were then parsed to remove duplicated UMIs 
before being converted into a final barcode UMI count matrix.

Barcode library sequencing statistics. MULTI-seq barcode library sequencing 
statistics were computed for classified singlets in all datasets presented in this 
study. SNR was computed for every cell by finding the quotient of the top two 
most abundant barcodes. Mean SNRs among all singlets for each dataset presented 
in this study are documented in Supplementary Table 2. The alignment rate was 
defined as the proportion of singlet-associated sequencing reads where the first 
eight bases of R2 aligned with <1 mismatch to any reference barcode.

MULTI-seq sample classification. MULTI-seq barcode UMI count matrices were 
used to classify cells into sample groups via a workflow inspired by previous 
scRNA-seq multiplexing approaches15,16,21 (Supplementary Fig. 3). First, raw 
barcode reads were log2-transformed and mean-centered. The presence of each 
barcode was then visually inspected by performing t-SNE on the normalized 
barcode count matrix, as implemented in the ‘Rtsne’ R package with ‘initial_dims’ 

set to the total number of barcodes56. Missing barcodes (observed only for the 
96-plex HMEC experiment) were discerned as those lacking any enrichment in 
barcode space and were removed.

Next, the top and bottom 0.1% of values for each barcode were excluded and 
the probability density function (PDF) for each barcode was defined by applying 
the ‘approxfun’ R function to Gaussian kernel density estimations produced 
using the ‘bkde’ function from the ‘KernSmooth’ R package60. We then sought to 
classify cells according to the assumption that groups of cells that are positive and 
negative for each barcode should manifest as local PDF maxima15,16. To this end, 
we computed all local maxima for each PDF and defined negative and positive 
maxima as the most frequent and highest local maxima, respectively. This strategy 
assumes that truly barcoded cells will have the highest abundance for any given 
barcode and that no individual sample group will have more members than the 
sum of all other groups.

With these positive and negative approximations in hand, we next sought to 
define barcode-specific UMI thresholds. To find the best inter-maxima quantile 
for threshold definition (for example, an inter-maxima quantile of 0.5 corresponds 
to the mid-point), we iterated across 0.02-quantile increments and chose the value 
that maximized the number of singlet classifications. Sample classifications were 
then made using these barcode-specific UMI thresholds by discerning which 
thresholds each cell surpasses, with doublets being defined as cells surpassing 
>1 threshold21. Negative cells (that is, cells surpassing zero thresholds) were then 
removed and this procedure was repeated until all cells were classified as singlets or 
doublets. Subsets of negative cells could then be reclassified using semi-supervised 
learning21, where singlets defined during the initial workflow are used to initialize 
cluster centers during k-means clustering of negative cells (Supplementary 
Materials).

Statistical tests. Statistically significant TGFBI expression enrichment among 
TGF-β-stimulated and unstimulated HMECs in the proof-of-concept scRNA-seq 
experiment was assessed using the Wilcoxon rank-sum test (two-sided, n = 1,950 
cells). Statistically significant TGFBI expression enrichment among LEPs and 
MEPs grouped according to signaling molecule exposure was assessed using the 
Wilcoxon rank-sum test (two-sided, n = 32 signaling molecule condition groups). 
Differentially expressed genes between clusters in all datasets were defined using 
the likelihood-ratio test for single-cell gene expression57 with Bonferroni multiple 
comparisons adjustment. Statistically significant changes in lung immune cell-type 
proportions during metastatic progression were assessed using the two-proportion 
z-test with Bonferroni multiple comparisons adjustment (n = 44 tumor-stage/cell 
type groups).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw gene expression and barcode count matrices were uploaded to the Gene 
Expression Omnibus (GSE129578) along with pertinent metadata.

Code availability
R implementations of the MULTI-seq sample classification and barcode pre-
processing pipelines are available in the ‘deMULTIplex’ R package, and can be 
downloaded at https://github.com/chris-mcginnis-ucsf/MULTI-seq.
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
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n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection No software was used data data collection

Data analysis scRNA-seq data was analyzed primarily using the 'Seurat' R package (V2.3, https://satijalab.org/seurat/). 
Additional R packages used for scRNA-seq data analysis: DoubletFinder (V2.0, https://github.com/chris-mcginnis-ucsf/DoubletFinder) and 
EMDomics (V3.8, https://www.bioconductor.org/packages/release/bioc/html/EMDomics.html). 
scRNA-seq expression library FASTQs were pre-processed using CellRanger (V2.2, 10X Genomics). 
MULTI-seq sample classification and FASTQ pre-processing was performed the 'deMULTIplex' R package (V1.0, https://github.com/chris-
mcginnis-ucsf/MULTI-seq).  
All figures were made using the 'ggplot2' (V3.1) and 'Seurat' (V2.3) R packages. 
Analytical flow cytometry analysis was performed using FlowJo.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Raw gene expression and MULTI-seq sample barcode count matrices were uploaded to the Gene Expression Omnibus (GSE…). Relevant count and metadata for 
each main text and supplemental figure are available in the Supplementary Materials. 
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For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were not selected a priori. Instead, single-cell transcriptomes passing quality-control filtering were utilized to demonstrate key 
aspects of  MULTI-seq methodology performance. Biological interpretations of single-cell RNA sequencing data was constrained by statistical 
significance.

Data exclusions No data excluded

Replication Experiments presented in the paper were not repeated.

Randomization Randomization is not relevant to this study because we sought to specifically test whether single-cell transcriptome data could be linked to 
pre-defined MULTI-seq barcodes in a fashion matching expectations. Moreover, sample barcoding was utilized to explore unknown facets of 
how the cellular responses to perturbations manifest transcriptomically.  Thus, randomizing sample barcodes across perturbations would 
defeat the purpose of our experiments.

Blinding Blinding was not relevant for this study because technology development requires ground-truth benchmarks with which to assess assay 
accuracy.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Unique biological materials
Policy information about availability of materials

Obtaining unique materials Triple negative breast cancer PDX models were established and provided by the lab of A. Welm (Derose et al., 2011). These labs 
provide material transfer upon request.
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Antibodies
Antibodies used Analytical:  

None 
 
HMEC: (Antibody Name: Supplier, Catalog Number, Clone) 
1:50 APC/Cy-7 anti-human/mouse CD49f: Biolegend, #313628, GoH3 
1:200 FITC anti-human CD326 (EPCAM): Biolegend, #324204, 9C4 
 
PDX: (Antibody Name: Supplier, Catalog Number, Clone) 
1:200 Fc-block: Tonbo, #70-0161-U500, 2.4G2 
1:100 FITC anti-mouse TER119: ThermoFisher, #11-5921-82, TER-119 
1:25 FITC anti-mouse CD31: ThermoFisher, #11-0311-85, 390 
1:20 (tumor), 1:80 (lung) BV450 anti-mouse CD45: Tonbo, #75-0451-U100, 30-F11 
1:40 (tumor), 1:160 (lung) APC anti-mouse MHC-I: eBioscience, #17-5999-82, 28-14-8 
1:80 PE anti-human CD298: BioLegend, #341704, LNH-94

Validation Analytical: 
None 
 
HMEC:  
Both antibodies were validated and quality control tested for flow cytometry applications. 
Antibodies were used to sort MEPs and LEPs from bulk HMECs, as described previously (Lim E, Vaillant F, Wu D, Forrest NC, Pal B, 
Hart AH, et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation 
carriers. Nat Med. 2009; 15(8):907-13.) 
 
PDX: 
All antibodies were validated and quality control tested for flow cytometry applications. 
Antibodies were used to enrich for human tumor cells and tumor-associated mouse immune cells, as described previously (1. 
Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, Takai K, et al. Single-cell analysis reveals a stem-cell program in human 
metastatic breast cancer cells. Nature. 2015; 526(7571):131-5.)

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) HEK293: ATCC CRL-1573 
MEF: ATCC 
Jurkat: ATCC TIB-152 
HMEC: Lawrence Berkeley National Laboratory Human Mammary Epithelial Cell (HMEC) Bank

Authentication HMEC: Primary cells do not require authentication 
MEF/Jurkat/HEK293: Cells were authenticated at their source (e.g., ATCC) prior to acquisition, but no extra authentication 
was employed in this study. Single-cell gene expression profiles match expectations from literature-supported marker genes 
for each cell line.

Mycoplasma contamination Cell lines were tested for mycoplasma contamination at their source (e.g., ATCC), but no extra testing was employed in this 
study.

Commonly misidentified lines
(See ICLAC register)

HEK cells were used in the proof-of-concept single-cell RNA sequencing experiment and analytical flow cytometry 
experiments because biological interpretation of these datasets was secondary to analysis of lipid-modified nucleotide 
behavior in a cellular context. Jurkat cells were used in the proof-of-concept single-nucleus RNA sequencing experiment due 
to their well-characterized temporal response to PMA and Ionomycin stimulation.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Species: Mus musculus 
Strain: NOD-scid gamma  
Sex: Female 
Age: 5-8 months

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve field-collected samples
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Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Analytical: HEKs were trypsinized for 5 minutes at 37°C in 0.05% trypsin-EDTA before quenching with appropriate cell culture 
media. Single-cell suspensions were then pelleted for 4 minutes at 160 xg and washed once with PBS before resuspension in 
90uL of a 200nM solution containing equimolar amounts of anchor LMO and sample barcode oligonucleotides in PBS. Anchor 
LMO-barcode labeling was performed for 5 minutes on ice before 10 uL of 2uM co-anchor LMO in PBS was added to each cell 
pool. Following gentle mixing, the labeling reaction was continued on ice for another 5 minutes before cells were washed twice 
with PBS, resuspended in PBS with 0.04% BSA. 
 
HMEC: Fourth passage HMECs were lifted using 0.05% trypsin+EDTA for 5 minutes. The cell suspension was passed through a 
0.45 um cell strainer to remove any clumps. The cells were washed with M87A media once and resuspended at 10^7 cells/mL. 
The cells were incubated with 1:50 APC/Cy-7 anti-human/mouse CD49f (Biolegend, #313628) and 1:200 FITC anti-human CD326 
(EpCAM) (Biolegend, #324204) antibodies for 30 minutes on ice. The cells were washed once with PBS and resuspended in PBS 
with 2% BSA with DAPI at 2-4 million cells/mL prior to FACS 
 
PDX: Cryopreserved tissue was dissociated in digestion media containing 50 ug/mL Liberase TL (Sigma-Aldrich) and 2x10^4 U/mL 
DNase I (Sigma-Aldrich) in DMEM/F12 (Gibco) using standard GentleMacs protocols. All samples were filtered through a 70 um 
filter to ensure single cell suspensions and were stained on ice for FACS sorting with Zombie NIR (BioLegend, #423105) 15 min in 
PBS, following antibody staining for 45 min in PBS/2%FBS with Fc-block (Tonbo, #70-0161-U500), anti-mouse TER119 (FITC, 
ThermoFisher, #11-5921-82), anti-mouse CD31 (FITC, ThermoFisher, #11-0311-85), anti-mouse CD45 (BV450, Tonbo, #75-0451-
U100), anti-mouse MHC-I (APC, eBioscience, #17-5999-82) and anti-human CD298 (PE, BioLegend, #341704). MULTI-seq labeling 
was performed using 100uL of a 2.5uM solution containing equimolar amounts of anchor LMO and sample barcode 
oligonucleotides in PBS. LMO labeling was performed for 5 minutes on ice before 20uL of 15uM co-anchor LMO in PBS was 
added to each cell pool. LMO labeling was continued for another 5 minutes on ice before cells were washed once with PBS 
containing 2% FBS.

Instrument Analytical: BD FACScalibur 
 
HMEC: BD FACS Aria III 
 
PDX: BD FACS Aria II

Software FACS Data Collection Software 
Analytical: CellQuest 
HMEC and PDX: BD FACS Diva  
 
FACS Data Analysis Software 
Analytical, HMEC, and PDX: FowJo and R

Cell population abundance Analytical: n/a 
 
HMEC: Fourth-passage HMECs primarily contain  two epithelial cell types – luminal and myoepithelial cells (LEP and MEP 
respectively). The LEP and MEP populations were isolated by gating on cell surface markers – EpCAM and CD49f. LEP and MEP 
were defined as EpCAMhi, CD49flo and EpCAMlo, CD49fhi respectively. Typically, LEP comprise of 10-15% of the unsorted cells. 
Post-sort purity was assessed by immunostaining for lineage-specific markers keratin 19 for LEP and p63 for MEP. LEP sorts were 
~90% pure whereas MEP sorts were ~98% pure.

Gating strategy Analytical: Live cells were distinguished from debris and cell aggregates via FSC-A x SSC-A gating. 
 
HMEC: Gating on FSC-A x SSC-A and FSC-A x FSC-W was used to eliminate cell aggregates and ensure the collection of only single 
cells. Live cells were gated as DAPI-. LEP and MEP were defined as EpCAMhi, CD49flo and EpCAMlo, CD49fhi respectively.  
 
PDX: FSC-H x FSC-W and SSC-A x SSC-W gating was used to eliminate cell aggregates and ensure single cell sorting. After live-cell 
enrichment through eliminating NIR+ cells, we sorted live mouse CD45+ and human tumor cells (hCD298+ Lin- mMHC-I-) which 
excluded contaminating human or mouse haematopoietic and endothelial cells by gating out Lin+ (Ter119, CD31) cells. Positive 
and negative populations were defined through unstained and FMO controls.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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